Rotary Ball Spline Type LTR

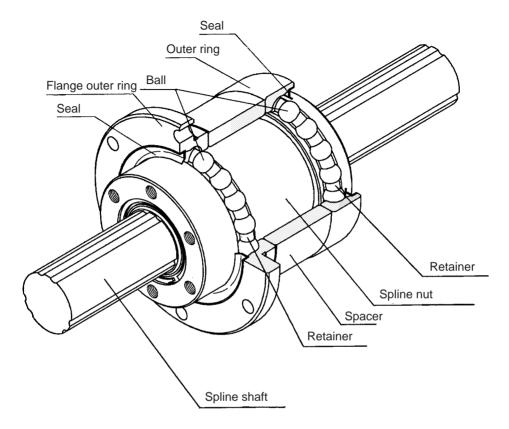


Fig. 1 Construction of Rotary Ball Spline Type LTR

Construction and Features

Rotary Ball Spline type LTR has six trains of load-bearing balls to hold three crests on the spline shaft from both sides, so that an appropriate preload is applied without trouble. Angular-contact raceways that constitute a support bearing are formed on the exterior of the spline nut, making this type compact and lightweight.

The support bearing is provided using specific seals, which prevent the entry of foreign matter. The balls are held in place by a retainer (made of special synthetic resin) that causes the balls to circulate in line and prevents them from falling off if the spline shaft is removed.

Lightweight and compact

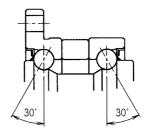
The one-piece design integrating the spline nut and support bearing into one unit enables precise and compact design.

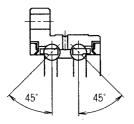
The compact spline nut is lightweight and therefore develops little inertia. A sensitive response can therefore be obtained.

Zero angular backlash

The preloaded angular-contact design, in which two trains of balls arranged opposite one another hold a crest on the spline shaft at a contact angle of 20° , reduces the angular backlash in the rotational direction to zero and increases rigidity.

Simple assembly


Just bolt the spline nut to the housing. It's that simple.


Major uses

- · Scalar robot Z axis
- Wire winder
- Machine center ATC
- · Assembling robots

High rigidity

A wide contact angle and appropriate level of preload combine to provide high torque and moment rigidity. The support bearing, with a contact angle of 30° , is resistant to moment load and rigidly supports the shaft. The contact angle for compact type LTR-A is 45° .

Clearance in the Rotational Direction

The clearance of the Ball Spline in the rotational direction significantly affects the rigidity and precision of the spline nut.

It is very important, therefore, to determine the appropriate clearance for the intended uses. As repeated swiveling and reciprocal linear motions cause heavy vibration and impact, preloading the system drastically improves its service life and accuracy.

We will determine the optimum clearance for your operating conditions. Please contact us.

Table 1 presents the clearances in the rotational direction for Ball Spline Type LTR.

		Operating conditions
Clearance in the rotational direction	СМ	 High rigidity is required; vibration and impact are heavy. Moment loads must be borne by a single spline nut.
	CL	 Overhang loads and moments are applied. Highly reproducible accuracy is required. Alternate loads are applied.
Clearance	Normal	 Smooth movement should be achieved with only a low magnitude of force. Torque is continually applied in a given direction.

Table 1 Ball Spline Clearance in the Rotational Direction

Unit: µm

Syr Nominal shaft	nbol Normal	Light preload	Medium preload		
diameter	No symbol	CL	СМ		
8 10	-2 ~ +1	6 3			
16 20	-2~+1	-6 ~ -2	-9 ~ -5		
25 32	-3 ~ +2	-10 ~ -4	-14 ~ -8		
40 50	-4 ~ +2	-16 ~ -8	-22 ~ -14		
60	-5 ~ +2	-22 ~ -12	-30 ~ -20		

Note: For normal clearance, do not append any symbol to a model number. For medium and light preloads, append "CM" or "CL". (For model-number coding, see page B-95.)

Spline Shaft

Spline-shaft cross-sectional shape and outer-diameter tolerance

For Ball Spline type LTR, spline shafts can be provided upon request. When requesting an estimate or placing an order, specify the spline-shaft cross-sectional shape.

Table 2 presents the spline-shaft minor diameters and tolerances for the standard spline-shaft outer diameters.

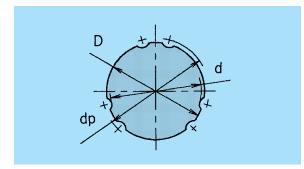
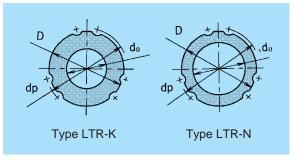



Table 2 Spline Shaft Cross-Sectional Shape

			Unit. min		
Nominal shaft diameter	Minor diametr d	Outer diameter D	Outer-diameter tolerance		
8	7.0	8	0		
10	8.5	10	-0.015		
16	14.5	16	0 0.018		
20	18.5	20			
25	23.0	25	0 -0.021		
32	30.0	32			
40	37.5	40	0		
50	46.5	50	-0.025		
60	56.5	60	0 0.030		

Hollow-spline-shaft inner diameter

For Ball Spline type LTR, the hollow spline shafts shown in Table 4 are available as standard components. They are lightweight and can be used as a hydropneumatic passage.

Table 4 Standard Hollow-Spline Shaft Dimensions

Unit: mm

Nominal		Туре	e K	Туре N			
shaft diameter	Outer diameter D	Hollow diameter d₀	Mass kg/m	Hollow diameter d₀	Mass kg/m		
8	8	3.0	0.35	-	-		
10	10	4.0	0.52	-	-		
16	16	7	1.3	11	0.8		
20	20	10	1.8	14	1.3		
25	25	12	3.0	18	1.9		
32	32	18	4.3	23	3.1		
40	40	22	6.9	29	4.7		
50	50	25	11.6	36	7.4		
60	60	32	16.0	-	-		

Note: The standard hollow spline shaft comes in two types, K and N. Specify the required type by appending "K" or "N" to the desired model number.

Table 3 Ball Center-to-Center Shaft Diameter

I Init: mm

Unit: mm

Nominal shaft diameter	8	10	16	20	25	32	40	50	60
dp	9.3	11.5	17.8	22.1	27.6	35.2	44.2	55.2	66.3

Length of incomplete spline portion in special spline-shaft

To obtain a spline-shaft end or mid-point diameter greater than the minor diameter (d), an incomplete spline portion is required to provide a recess under the grinding wheel. Table 5 shows the relationship between the incomplete spline length (S) and the flange diameter (D_0). This, however, does not apply to spline shafts with an overall length of 1,500 mm or more. For spline shafts with an overall length greater than 1,500 mm, contact us.

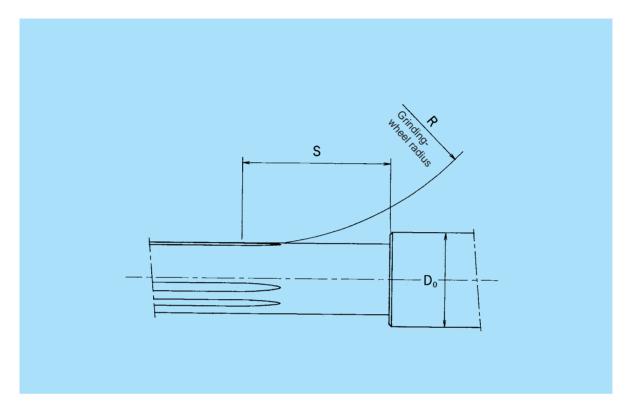


Table 5 Incomplete Spline Length S

Unit: mm

Flange diameter Nominal D ₀ shaft diameter	6	8	10	13	16	20	25	30	40	50	60	80	100	120	140	160
8	-	16	24	30	35	-	-	-	-	-	-	-	-	-	-	-
10	-	-	17	27	32	37	-	-	-	-	-	-	-	-	-	-
16	-	-	-	-	21	36	46	54	-	-	-	-	-	-	-	-
20	-	I	-	-	-	21	38	48	62	-	-	-	I	-	-	-
25	-	-	-	-	-	-	23	39	56	67	-	-	-	-	-	-
32	-	I	-	-	-	-	-	24	49	62	72	I	I	-	-	-
40	-	-	-	-	-	-	-	-	27	50	63	81	-	-	-	-
50	-	-	-	-	-	-	-	-	-	29	51	74	89	-	-	-
60	-	-	-	-	-	-	-	-	-	-	28	56	71	82	-	-