Belt length when $\mathrm{i}=1$

\quad| L_{B} | $\approx \frac{t}{2}\left(z_{2}+z_{1}\right)+2$ |
| ---: | :--- |
| Peripheral Force | |
| F_{U} | $=\frac{2 \cdot 10^{3} \cdot \mathrm{M}}{d_{0}}$ |
| | $=\frac{19.1 \cdot 10^{6} \cdot \mathrm{P}}{\mathrm{n} \cdot \mathrm{d}_{0}}$ |
| | $=\frac{10^{3} \cdot \mathrm{P}}{\mathrm{v}}$ |

Angular velocity
$\omega=\frac{\pi \cdot n}{30}$

Mass moment of inertia

$$
J=98.2 \cdot 10^{-15} \cdot B \cdot \rho \cdot\left(d_{k}^{4}-d^{4}\right)
$$

$J=98.2 \cdot 10^{-15} \cdot B \cdot \rho \cdot\left(d_{k}^{4}-d^{4}\right)$

Torque

$$
\begin{aligned}
M & =\frac{d_{0} \cdot F_{U}}{2 \cdot 10^{3}} \\
& =\frac{9.55 \cdot 10^{3} \cdot p}{n} \\
& =\frac{d_{0} \cdot P}{2 \cdot v}
\end{aligned}
$$

RPM
$\mathrm{n}=\frac{19.1 \cdot 10^{3} \cdot \mathrm{v}}{\mathrm{d}_{0}}$

Center distance
Acceleration torque
Acceleration time
Bore
Density
Torque
RPM
Outside diameter
Power
Moment of inertia
Belt length
Ratio

Belt length when $\mathrm{i}=1$

$$
\begin{aligned}
L_{B} & =2 a+\pi \cdot d_{0} \\
& =2 a+z \cdot \dagger
\end{aligned}
$$

Power

P	$=\frac{M \cdot n}{9.55 \cdot 10^{3}}$
	$=\frac{F_{U} \cdot d_{0} \cdot n}{19.1 \cdot 10^{6}}$
	$=\frac{F_{U} \cdot \mathrm{v}}{1000}$

Velocity

$$
\mathrm{v}=\frac{\mathrm{d}_{0} \cdot \mathrm{n}}{19.1 \cdot 10^{3}}
$$

Acceleration torque

$$
M_{B}=\frac{\mathrm{J} \cdot \Delta \mathrm{n}}{9.55 \cdot t_{\mathrm{B}}}
$$

Only the units listed above should be used in the formulae as they are the approved SI units. The unit of force, the Newton, is very important: 1 N is the force required to accelerate a body with a mass of 1 kg to $1 \mathrm{~m} / \mathrm{s}^{2} . \Delta 1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
Conversion of non-standard units:

Force	$1 \mathrm{kp}=1 \mathrm{~kg} \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2}=9.81 \mathrm{~N} \approx 1 \mathrm{daN}$
Torque	$1 \mathrm{kpm}=9.81 \mathrm{kgm}^{2} / \mathrm{s}^{2}=9.81 \mathrm{Nm} \approx 1 \mathrm{daNm}$
Power	$1 \mathrm{PS}=75 \mathrm{kpm} / \mathrm{s}=0.736 \mathrm{~kW}$
Centrifugal force	$1\left[\mathrm{GD}^{2}\right]=4[\mathrm{JJ}]$ when GD^{2} in kpm^{2} and J in kgm^{2}

