FORMULAE Terms and Definitions

	Fur doin doin zi	Faul Faul Ann Ann Ann Ann Ann Ann Ann An		
Center distance Acceleration torque Acceleration time Bore Density Torque RPM Outside diameter Power Moment of inertia Belt length Ratio	a (mm) M_B (Nm) t_B (s) d (mm) ρ (kg/dm ³) M (Nm) n (min ⁻¹) d_K (mm) P (kW) J (kgm ²) L_B (mm) i	Allowable tensile strength of tension member Pulley width Pitch Velocity Peripheral force Angular velocity Pitch circle diameter No. of teeth when i = 1 No. of teeth of small pulley No. of teeth of large pulley No. of teeth on the belt No. of teeth in mesh	$\begin{array}{cccc} F_{zul} & (I\\ B & (I)\\ t & (I\\ V & (I\\ F_U & (I\\ \omega & (I\\ d_0 & (I\\ z\\ Z_1\\ Z_2\\ Z_B\\ Z_e\\ Z_e \end{array}$	N) mm) m/s) N) s ⁻¹) mm)
Belt length when $i \neq 1$ $L_{B} \approx \frac{1}{2} (z_{2} + z_{1}) + 2c_{1}$	$a + \frac{1}{4a} \left[\frac{(z_2 - z_1)t}{\pi} \right]^2$	Belt length when i = 1 $L_{B} = 2\alpha + \pi \cdot d_{0}$ $= 2\alpha + z \cdot t$		
Peripheral Force	Torque	Power		
$F_{U} = \frac{2 \cdot 10^{3} \cdot M}{d_{0}}$ $= \frac{19.1 \cdot 10^{6} \cdot P}{n \cdot d_{0}}$ $= \frac{10^{3} \cdot P}{v}$	$M = \frac{d_0 \cdot F_u}{2 \cdot 10^3}$ $= \frac{9.55 \cdot 10^3 \cdot P}{n}$ $= \frac{d_0 \cdot P}{2 \cdot v}$	$P = \frac{M \cdot n}{9.55 \cdot 10^3}$ $= \frac{F_u \cdot d_o \cdot n}{19.1 \cdot 10^6}$ $= \frac{F_u \cdot v}{1000}$		
Angular velocity	RPM	J L Velocity		
$\omega = \frac{\pi \cdot \mathbf{n}}{30}$	$n = \frac{19.1 \cdot 10^3 \cdot v}{d_0}$	$v = \frac{d_0 \cdot n}{19.1 \cdot 10^3}$		
iviass moment of inertia		Acceleration torque		
$J = 98.2 \cdot 10^{-15} \cdot B$	$\cdot \rho \cdot \left(\mathbf{d}_{\mathbf{K}}^{4} - \mathbf{d}^{4} \right)$	$M_{B} = \frac{J \cdot \Delta n}{9.55 \cdot t_{B}}$		

Only the units listed above should be used in the formulae as they are the approved SI units. The unit of force, the Newton, is very important: 1N is the force required to accelerate a body with a mass of 1kg to $1m/s^2$. $\Box > 1 \text{ kg} \cdot \text{m/s}^2$

Conversion of non-standard units:

Force	1 kp = 1 kg · 9.81m/s ² = 9.81 N ≈ 1 daN
Torque	$1 \text{ kpm} = 9.81 \text{ kgm}^2/\text{s}^2 = 9.81 \text{ Nm} \approx 1 \text{ daNm}$
Power	1 PS = 75 kpm/s = 0.736 kW
Centrifugal force	1 [GD ²] = 4 [J] when GD ² in kpm ² and J in kgm ²